Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

Contents

Abstract

Abstract / Contributions

Background

Bayesian and DL / Calibration / Adversarial Training

Deep Ensemble

Proper scoring rules / Adversarial Training / Ensembles / Algorithms

Experiments

Setup and Toy Example / Regression & Classification / Uncertainty Evaluation / Accuracy as a Function of Confidence

+Reference

Abstract

- 지금까지의 DNNs의 성과와 별개로 uncertainty를 구하는 것은 또 다른 challenge. 현대 딥러닝 모델은 overconfident한 경향을 보임
- 지금까지 Bayesian-NN 을 활용해 uncertainty를 구했지만 많은 parameter수정과 연산을 요구함
- 본 연구에서 병렬적으로 uncertainty estimation이 가능한 Non-Bayesian 방법론을 제시

Contributions

- Simple하면서도 scalable한 uncertainty estimation 방법론을 제시한다. 또한 ensemble과 adversarial training을 활용한 모델 설계 및 학습을 하며 이것이 주어진 문제 해결에 도움이 되었음
- Calibration과 일반화의 관점에서 uncertainty estimation의 quality를 측정하는 방법을 제시

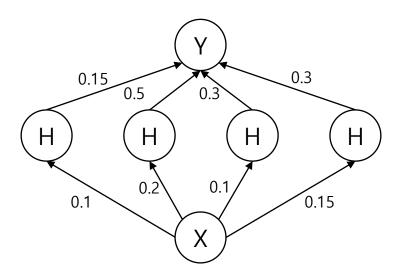
A. Bayesian and DL

(1)
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)} = \frac{Likelihood\ P \times Prior\ P}{Evidence} = Posterior\ P$$

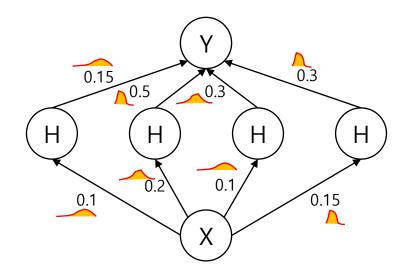
(2)
$$P(W|Y,X) = \frac{P(Y|W,X)P(W)}{P(Y|X)}$$
 (3) $P(W|D) = \frac{P(D|W)P(W)}{P(D)}$

- 암에 걸릴 확률이 0.1%이다. 어떤 테스트기는 암이 걸린 사람 99%에게 양성 반응을 보이고 병이 없는 사람에 게는 1%확률로 양성반응을 보인다. 검사 결과 양성이었을 때 정말 암에 걸렸을 확률은?
- H: 암에 걸림, E: 양성반응
- $p(H|E) = \frac{0.99*0.001}{0.001*0.99+0.999*0.01} = 9\%$
- 다시 검사했더니 또 양성이었다. 이럴 경우 정말 암에 걸렸을 확률은?
- $p(H|E) = \frac{0.99*0.09}{0.09*0.99+0.91*0.01} = 91\%$
- posterior를 통해 prior를 업데이트함!

A. Bayesian and DL



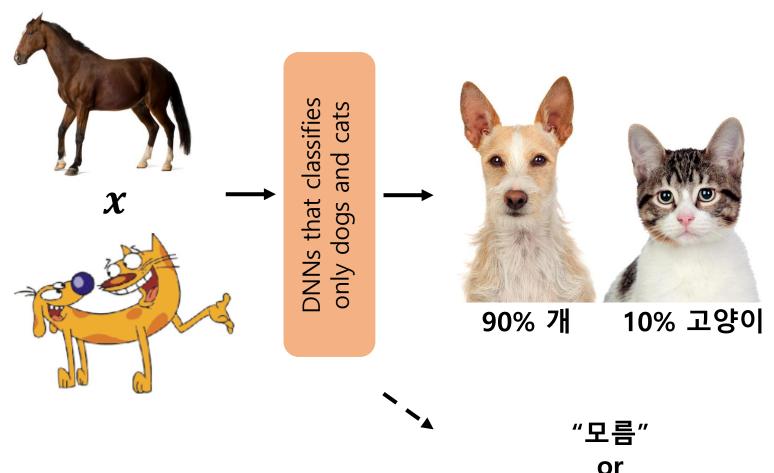
- Training을 통해 weigh가 결정됨
- 학습된 weigh가 고정되고 따라서 새로운 입력에 대한 예측값도 고정됨
- 이는 training data를 신뢰하여 우도를 최대화 하였다고 봄



$$P(model|data) = \frac{P(data|model)P(model)}{P(data)}$$

- 학습을 통해 weight를 고정하지 않고 weight의 분 포를 얻음
- dropout, 베이지안 vs 앙상블

B. Calibration on ML

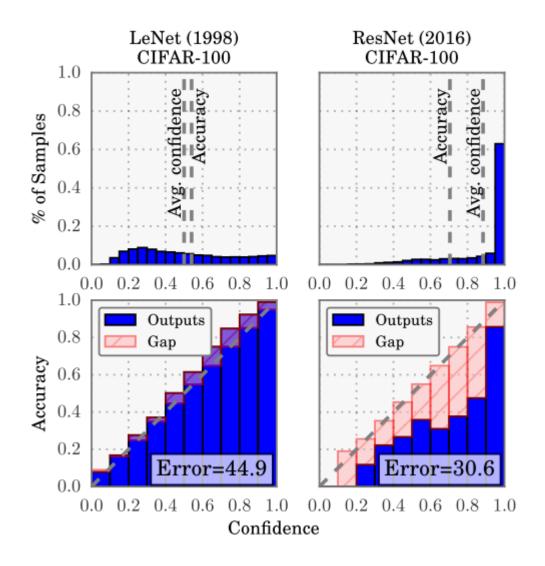


Overconfident

or 낮은 확률로 "개"

Well-calibrated

B. Calibration on ML

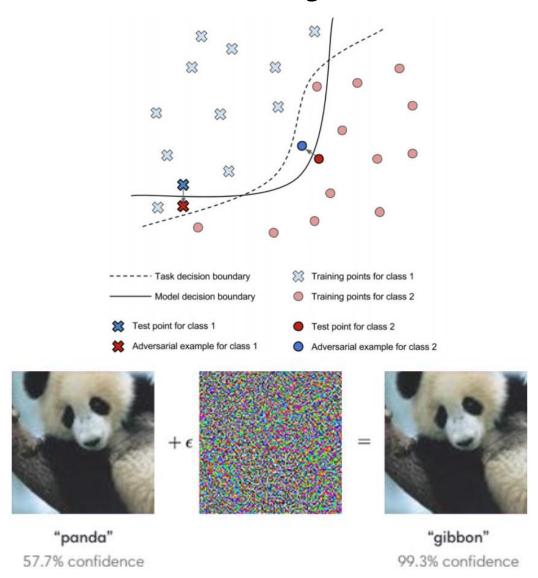


$$(1) P(\hat{Y} = y | \hat{P} = p) = p$$

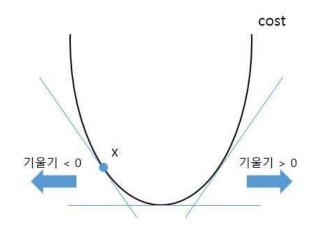
(2) Calibration Error:
$$E_{\hat{P}}[P(\hat{Y}=y|\hat{P}=p)-p]$$

$$(3) ECE: \sum_{m=1}^{M} \frac{|B_m|}{n} |acc(B_m) - conf(B_m)|$$

C. Adversarial Training

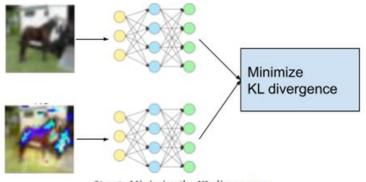


① $FGSM: \tilde{x} = x + \epsilon sign(\nabla_x l(\theta, x, y))$



② $VAT: \Delta x = \arg \max_{\Delta x} KL(p(y|x)||p(y|x + \Delta x))$

Step 1: Generate the adversarial image



A. Proper scoring rules

- Uncertainty를 측정하기위한 방법으로 제시
- Well-calibrate된 경우에 더 좋은(better) 점수를 부여
- NNs의 경우 loss $L(\theta) = -S(p_{\theta}, q)$ 를 최소화하는 방법이 쓰임

Classification: Brier score

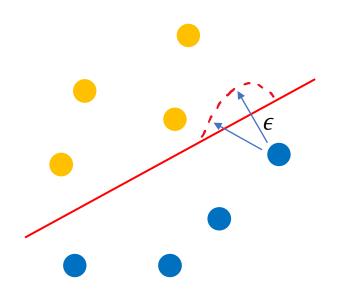
$$egin{aligned} \mathcal{L}(heta) &= -S(p_{ heta},(y,\mathbf{x})) = \ K^{-1} \sum_{k=1}^K (\delta_{k=y} - p_{ heta} \; (y,\mathbf{x}))^2 \end{aligned}$$

Regression: NLL

$$-\log p_{\theta}(y_n|\mathbf{x}_n) = \frac{\log \sigma_{\theta}^2(\mathbf{x})}{2} + \frac{(y - \mu_{\theta}(\mathbf{x}))^2}{2\sigma_{\theta}^2(\mathbf{x})} + \text{constant.}$$

B. Adversarial training

- Adversarial training은 classifier의 robustness를 향상시키는 것으로 알려져있음
- FGSM과 VAT를 제시하며 실험 setting에 따라서 다양한 방법을 시도해 볼 수 있음을 제시



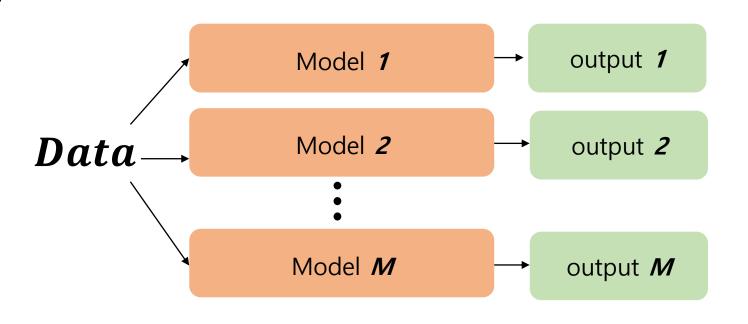
C. Ensembles

Parallel Ensemble (i.e. random forest)

① For input

$$\lim_{N \to \infty} \left\{ 1 - \left(1 - \frac{1}{N} \right)^N \right\} = 1 - \lim_{N \to \infty} \left(\frac{N}{N - 1} \right)^{-N}$$
$$= 1 - \lim_{N \to \infty} \left(1 + \frac{1}{N - 1} \right)^{-N} = 1 - \frac{1}{e} \approx 0.632$$

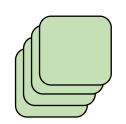
$$\lim_{N\to\infty} \left(1+\frac{1}{x}\right)^x = e$$



② For output



Classification: Majority voting



Regression : Averaging

D. Algorithms

Algorithm 1 Pseudocode of the training procedure for our method

- 1: \triangleright Let each neural network parametrize a distribution over the outputs, i.e. $p_{\theta}(y|\mathbf{x})$. Use a proper scoring rule as the training criterion $\ell(\theta, \mathbf{x}, y)$. Recommended default values are M = 5 and $\epsilon = 1\%$ of the input range of the corresponding dimension (e.g 2.55 if input range is [0,255]).
- 2: Initialize $\theta_1, \theta_2, \dots, \theta_M$ randomly
- 3: **for** m = 1 : M **do**

- *⊳* train networks independently in parallel
- 4: Sample data point n_m randomly for each net \triangleright single n_m for clarity, minibatch in practice
- 5: Generate adversarial example using $\mathbf{x}'_{n_m} = \mathbf{x}_{n_m} + \epsilon \operatorname{sign}(\nabla_{\mathbf{x}_{n_m}} \ell(\theta_m, \mathbf{x}_{n_m}, y_{n_m}))$
- 6: Minimize $\ell(\theta_m, \mathbf{x}_{n_m}, y_{n_m}) + \ell(\theta_m, \mathbf{x}'_{n_m}, y_{n_m})$ w.r.t. $\theta_m > adversarial training (optional)$
- Ensembles as a uniformly-weighted model
- 1 For classification

$$p(y|\mathbf{x}) = M^{-1} \sum_{m=1}^{M} p_{\theta_m}(y|\mathbf{x}, \theta_m)$$

$$M^{-1} \sum_{m} \mathcal{N}(\mu_{ heta_m}(\mathbf{x}), \sigma^2_{ heta_m}(\mathbf{x}))$$
 $\mu_*(x) = M^{-1} \sum_{m} \mu_{ heta_m}(x)$
 $\sigma^2_* = M^{-1} \sum_{m} (\sigma^2_{ heta_m}(x) + \mu^2_{ heta_m}(x)) - \mu^2_*(x)$ 1 2

A. Setup and toy example

Experimental setup

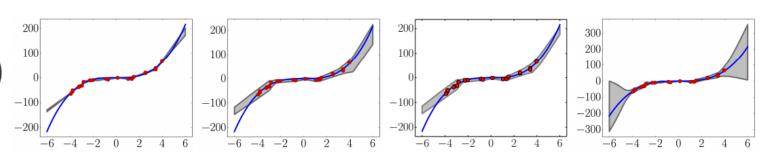
$$BS = K^{-1} \sum_{k=1}^{k} (t_k^* - p(y = k | \mathbf{x}^*))$$

(where, $t_k^* = 1 \text{ if } k = y^*, \text{ and } 0 \text{ o. w.}$)

Batch_size	100		
Optimizer	Adam		
lr	0.1		

- Default torch weights
- $\epsilon = 0.01$, FGSM

2 Toy Example

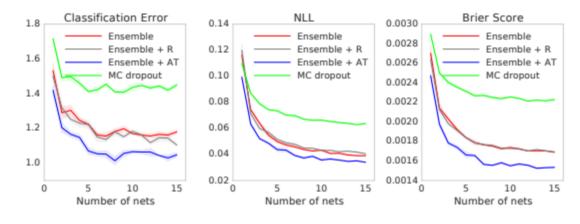


$$y = x^3 + \epsilon \ , where \ \epsilon \sim \mathcal{N}(0, 3^2)$$

- ① 5 networks trained using MSE ② NLL using single network
- 3 2+Adversarial Training 4 NLL+Ensemble 5 networks
- I. Scoring rule NLL 이 uncertainty prediction에 적합함
- II. Ensemble이 training data에서 먼 곳을 예측할 때도 성능의 향상을 보임

B. Regression and Classification

Datasets	I	RMSE			NLL	
	PBP	MC-dropout	Deep Ensembles	PBP	MC-dropout	Deep Ensembles
Boston housing	$ $ 3.01 \pm 0.18	$\textbf{2.97} \pm \textbf{0.85}$	$\textbf{3.28} \pm \textbf{1.00}$	2.57 ± 0.09	$\textbf{2.46} \pm \textbf{0.25}$	2.41 ± 0.25
Concrete	5.67 ± 0.09	$\textbf{5.23} \pm \textbf{0.53}$	$\textbf{6.03} \pm \textbf{0.58}$	$\textbf{3.16} \pm \textbf{0.02}$	$\textbf{3.04} \pm \textbf{0.09}$	$\textbf{3.06} \pm \textbf{0.18}$
Energy	$\textbf{1.80} \pm \textbf{0.05}$	$\textbf{1.66} \pm \textbf{0.19}$	$\textbf{2.09} \pm \textbf{0.29}$	2.04 ± 0.02	1.99 ± 0.09	$\textbf{1.38} \pm \textbf{0.22}$
Kin8nm	0.10 ± 0.00	0.10 ± 0.00	$\textbf{0.09} \pm \textbf{0.00}$	-0.90 ± 0.01	-0.95 ± 0.03	$\textbf{-1.20} \pm \textbf{0.02}$
Naval propulsion plant	0.01 ± 0.00	0.01 ± 0.00	$\textbf{0.00} \pm \textbf{0.00}$	-3.73 ± 0.01	-3.80 ± 0.05	$\textbf{-5.63} \pm \textbf{0.05}$
Power plant	4.12 ± 0.03	$\textbf{4.02} \pm \textbf{0.18}$	$\textbf{4.11} \pm \textbf{0.17}$	2.84 ± 0.01	$\textbf{2.80} \pm \textbf{0.05}$	$\textbf{2.79} \pm \textbf{0.04}$
Protein	4.73 ± 0.01	$\textbf{4.36} \pm \textbf{0.04}$	4.71 ± 0.06	2.97 ± 0.00	2.89 ± 0.01	$\textbf{2.83} \pm \textbf{0.02}$
Wine	$\textbf{0.64} \pm \textbf{0.01}$	$\textbf{0.62} \pm \textbf{0.04}$	$\textbf{0.64} \pm \textbf{0.04}$	0.97 ± 0.01	$\textbf{0.93} \pm \textbf{0.06}$	$\textbf{0.94} \pm \textbf{0.12}$
Yacht	1.02 ± 0.05	$\textbf{1.11} \pm \textbf{0.38}$	$\textbf{1.58} \pm \textbf{0.48}$	1.63 ± 0.02	1.55 ± 0.12	$\textbf{1.18} \pm \textbf{0.21}$
Year Prediction MSD	$8.88 \pm NA$	$\textbf{8.85} \pm \textbf{NA}$	$8.89 \pm NA$	$3.60 \pm NA$	$3.59 \pm NA$	$3.35 \pm NA$

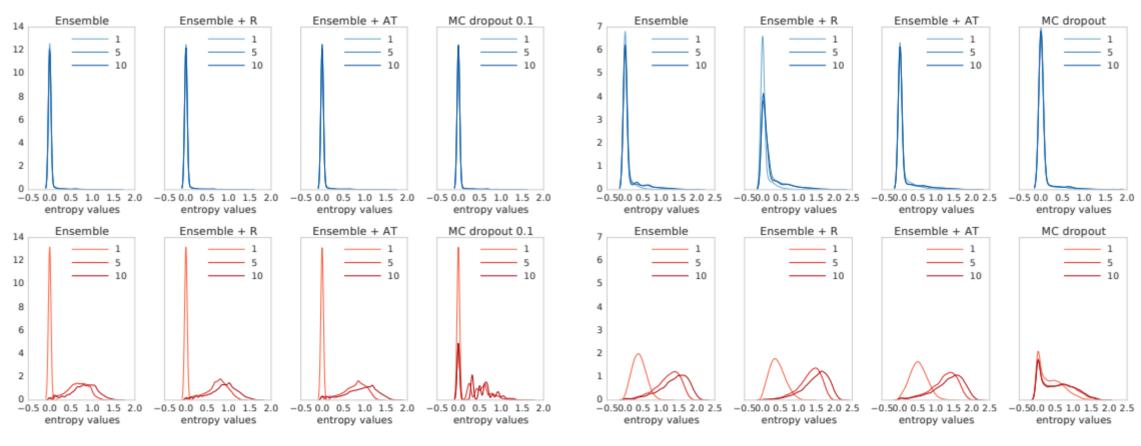


NLL Classification Error Brier Score 14 0.50 0.016 Ensemble Ensemble Ensemble 0.45 12 Ensemble + R Ensemble + R 0.014 - Ensemble + R Ensemble + AT Ensemble + AT Ensemble + AT 0.40 MC dropout 10 MC dropout 0.012 - MC dropout 0.35 8 0.010 0.30 6 0.008 0.25 0.006 0.20 2 0 0.15 0.004 5 10 0 10 5 10 Number of nets Number of nets Number of nets

(a) MNIST dataset using 3-layer MLP

(b) SVHN using VGG-style convnet

C. Uncertainty evaluation

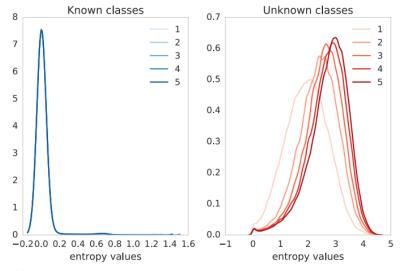


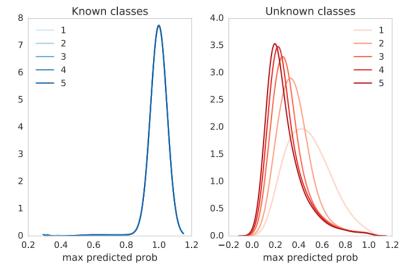
(a) MNIST-NotMNIST

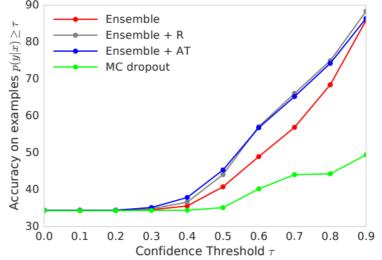
(b) SVHN-CIFAR10

D. Accuracy as a function of confidence

M	Top-1 error	Top-5 error	NLL	Brier Score
	%	%		$\times 10^{-3}$
1	22.166	6.129	0.959	0.317
2	20.462	5.274	0.867	0.294
3	19.709	4.955	0.836	0.286
4	19.334	4.723	0.818	0.282
5	19.104	4.637	0.809	0.280
6	18.986	4.532	0.803	0.278
7	18.860	4.485	0.797	0.277
8	18.771	4.430	0.794	0.276
9	18.728	4.373	0.791	0.276
10	18.675	4.364	0.789	0.275







Reference

- [1] On Calibration of Modern Neural Networks
- [2] Explaining and Harnessing Adversarial Examples
- [3] Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

THANK YOU